123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- # Not everything from this is used
- import numpy as np
- import pandas as pd
- from sklearn.datasets import fetch_openml
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import accuracy_score, log_loss, roc_auc_score
- from sklearn.preprocessing import LabelEncoder
- import os
- import wget
- from pathlib import Path
- import shutil
- import gzip
- from matplotlib import pyplot as plt
- import torch
- import random
- import math
- from FTtransformer.ft_transformer import Tokenizer, MultiheadAttention, Transformer, FTtransformer
- from FTtransformer import lib
- import zero
- import json
- # Experiment settings
- EPOCHS = 20
- RERUNS = 5 # How many times to redo the same setting
- # Backdoor settings
- target=["target"]
- backdoorFeatures = ["m_bb", "m_wwbb", "m_wbb"]
- backdoorTriggerValues = [0.877, 0.811, 0.922]
- targetLabel = 1 # Boson particle
- poisoningRates = [0.0, 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01]
- DEVICE = 'cuda:2'
- DATAPATH = "data/higgsFTT-3F-IB/"
- # FTtransformer config
- config = {
- 'data': {
- 'normalization': 'standard',
- 'path': DATAPATH
- },
- 'model': {
- 'activation': 'reglu',
- 'attention_dropout': 0.03815883962184247,
- 'd_ffn_factor': 1.333333333333333,
- 'd_token': 424,
- 'ffn_dropout': 0.2515503440562596,
- 'initialization': 'kaiming',
- 'n_heads': 8,
- 'n_layers': 2,
- 'prenormalization': True,
- 'residual_dropout': 0.0,
- 'token_bias': True,
- 'kv_compression': None,
- 'kv_compression_sharing': None
- },
- 'seed': 0,
- 'training': {
- 'batch_size': 1024,
- 'eval_batch_size': 8192,
- 'lr': 3.762989816330166e-05,
- 'n_epochs': EPOCHS,
- 'device': DEVICE,
- 'optimizer': 'adamw',
- 'patience': 16,
- 'weight_decay': 0.0001239780004929955
- }
- }
- # Load dataset
- data = pd.read_pickle("data/HIGGS/processed.pkl")
- # Setup data
- cat_cols = []
- num_cols = [col for col in data.columns.tolist() if col not in cat_cols]
- num_cols.remove(target[0])
- feature_columns = (
- num_cols + cat_cols + target)
- # Converts train valid and test DFs to .npy files + info.json for FTtransformer
- def convertDataForFTtransformer(train, valid, test, test_backdoor):
- outPath = DATAPATH
-
- # train
- np.save(outPath+"N_train.npy", train[num_cols].to_numpy(dtype='float32'))
- #np.save(outPath+"C_train.npy", train[cat_cols].applymap(str).to_numpy())
- np.save(outPath+"y_train.npy", train[target].to_numpy(dtype=int).flatten())
-
- # val
- np.save(outPath+"N_val.npy", valid[num_cols].to_numpy(dtype='float32'))
- #np.save(outPath+"C_val.npy", valid[cat_cols].applymap(str).to_numpy())
- np.save(outPath+"y_val.npy", valid[target].to_numpy(dtype=int).flatten())
-
- # test
- np.save(outPath+"N_test.npy", test[num_cols].to_numpy(dtype='float32'))
- #np.save(outPath+"C_test.npy", test[cat_cols].applymap(str).to_numpy())
- np.save(outPath+"y_test.npy", test[target].to_numpy(dtype=int).flatten())
-
- # test_backdoor
- np.save(outPath+"N_test_backdoor.npy", test_backdoor[num_cols].to_numpy(dtype='float32'))
- #np.save(outPath+"C_test_backdoor.npy", test_backdoor[cat_cols].applymap(str).to_numpy())
- np.save(outPath+"y_test_backdoor.npy", test_backdoor[target].to_numpy(dtype=int).flatten())
-
- # info.json
- info = {
- "name": "higgs___0",
- "basename": "higgs",
- "split": 0,
- "task_type": "binclass",
- "n_num_features": len(num_cols),
- "n_cat_features": 0,
- "train_size": len(train),
- "val_size": len(valid),
- "test_size": len(test),
- "test_backdoor_size": len(test_backdoor),
- "n_classes": 2
- }
-
- with open(outPath + 'info.json', 'w') as f:
- json.dump(info, f, indent = 4)
- # Experiment setup
- def GenerateTrigger(df, poisoningRate, backdoorTriggerValues, targetLabel):
- rows_with_trigger = df.sample(frac=poisoningRate)
- rows_with_trigger[backdoorFeatures] = backdoorTriggerValues
- rows_with_trigger[target] = targetLabel
- return rows_with_trigger
- def GenerateBackdoorTrigger(df, backdoorTriggerValues, targetLabel):
- df[backdoorFeatures] = backdoorTriggerValues
- df[target] = targetLabel
- return df
- def doExperiment(poisoningRate, backdoorFeatures, backdoorTriggerValues, targetLabel, runIdx):
- # Load dataset
- # Changes to output df will not influence input df
- train_and_valid, test = train_test_split(data, stratify=data[target[0]], test_size=0.2, random_state=runIdx)
-
- # Apply backdoor to train and valid data
- random.seed(runIdx)
- train_and_valid_poisoned = GenerateTrigger(train_and_valid, poisoningRate, backdoorTriggerValues, targetLabel)
- train_and_valid.update(train_and_valid_poisoned)
-
- # Create backdoored test version
- # Also copy to not disturb clean test data
- test_backdoor = test.copy()
- # Drop rows that already have the target label
- test_backdoor = test_backdoor[test_backdoor[target[0]] != targetLabel]
-
- # Add backdoor to all test_backdoor samples
- test_backdoor = GenerateBackdoorTrigger(test_backdoor, backdoorTriggerValues, targetLabel)
-
- # Set dtypes correctly
- train_and_valid[cat_cols + target] = train_and_valid[cat_cols + target].astype("int64")
- train_and_valid[num_cols] = train_and_valid[num_cols].astype("float64")
- test[cat_cols + target] = test[cat_cols + target].astype("int64")
- test[num_cols] = test[num_cols].astype("float64")
- test_backdoor[cat_cols + target] = test_backdoor[cat_cols + target].astype("int64")
- test_backdoor[num_cols] = test_backdoor[num_cols].astype("float64")
- # Split dataset into samples and labels
- train, valid = train_test_split(train_and_valid, stratify=train_and_valid[target[0]], test_size=0.2, random_state=runIdx)
- # Prepare data for FT-transformer
- convertDataForFTtransformer(train, valid, test, test_backdoor)
-
- checkpoint_path = 'FTtransformerCheckpoints/HIGGS_3F_IB_' + str(poisoningRate) + "-" + str(runIdx) + ".pt"
-
- # Create network
- ftTransformer = FTtransformer(config)
-
- # Fit network on backdoored data
- metrics = ftTransformer.fit(checkpoint_path)
-
- return metrics
- # Start experiment
- # Global results
- all_metrics = []
- for poisoningRate in poisoningRates:
- # Run results
- run_metrics = []
-
- for run in range(RERUNS):
- metrics = doExperiment(poisoningRate, backdoorFeatures, backdoorTriggerValues, targetLabel, run+1)
- print("Results for", poisoningRate, "Run", run+1)
- print(metrics)
- print("---------------------------------------")
- run_metrics.append(metrics)
-
- all_metrics.append(run_metrics)
- # Exctract relevant metrics
- ASR_results = []
- BA_results = []
- BAUC_results = []
- for exp in all_metrics:
- ASR_acc = []
- BA_acc = []
- BAUC_acc = []
- for run in exp:
- ASR_acc.append(run['test_backdoor']['accuracy'])
- BA_acc.append(run['test']['accuracy'])
- BAUC_acc.append(run['test']['roc_auc'])
- ASR_results.append(ASR_acc)
- BA_results.append(BA_acc)
- BAUC_results.append(BAUC_acc)
- for idx, poisoningRate in enumerate(poisoningRates):
- print("Results for", poisoningRate)
- print("ASR:", ASR_results[idx])
- print("BA:", BA_results[idx])
- print("BAUC:", BAUC_results[idx])
- print("------------------------------------------")
- print("________________________")
- print("EASY COPY PASTE RESULTS:")
- print("ASR_results = [")
- for idx, poisoningRate in enumerate(poisoningRates):
- print(ASR_results[idx], ",")
- print("]")
- print()
- print("BA_results = [")
- for idx, poisoningRate in enumerate(poisoningRates):
- print(BA_results[idx], ",")
- print("]")
- print()
- print("BAUC_results = [")
- for idx, poisoningRate in enumerate(poisoningRates):
- print(BAUC_results[idx], ",")
- print("]")
|