/* * Standard library * Contains basic functions, including timer and memory functions * Modified version for BCC */ // uses math.c #define UART_TX_ADDR 0xC02723 // Timer I/O Addresses #define TIMER1_VAL 0xC02739 #define TIMER1_CTRL 0xC0273A #define TIMER2_VAL 0xC0273B #define TIMER2_CTRL 0xC0273C #define TIMER3_VAL 0xC0273D #define TIMER3_CTRL 0xC0273E word timer1Value = 0; void* memcpy(void *dest, const void *src, word len) { // Typecast src and dest addresses to (char *) char *csrc = (char *)src; char *cdest = (char *)dest; // Copy contents of src[] to dest[] word i; for (i=0; i 0) i += itoar(n, s); s[i++] = digit + '0'; return i; } /* Converts integer n to characters. The characters are placed in the buffer s. The buffer is terminated with a 0 value. Uses recursion, division and mod to compute. */ void itoa(word n, char *s) { // compute and fill the buffer word i = itoar(n, s); // end with terminator s[i] = 0; } // Returns interrupt ID by using the readintid asm instruction word getIntID() { word retval = 0; asm( "readintid r2 ;reads interrupt id to r2\n" "write -4 r14 r2 ;write to stack to return\n" ); return retval; } /* Recursive helper function for itoa Eventually returns the number of digits in n s is the output buffer */ word itoahr(word n, char *s) { word digit = MATH_modU(n, 16); word i = 0; n = MATH_divU(n,16); if ((unsigned int) n > 0) i += itoahr(n, s); char c; if (digit > 9) { c = digit + 'A' - 10; } else { c = digit + '0'; } s[i++] = c; return i; } /* Converts integer n to hex string characters. The characters are placed in the buffer s. A prefix of 0x is added. The buffer is terminated with a 0 value. Uses recursion, division and mod to compute. */ void itoah(word n, char *s) { // add prefix s[0] = '0'; s[1] = 'x'; s+=2; // compute and fill the buffer word i = itoahr(n, s); // end with terminator s[i] = 0; } /* Converts string into int. Assumes the string is valid. Unsigned only! */ word strToInt(char* str) { word retval = 0; word multiplier = 1; word i = 0; while (str[i] != 0) { i++; } if (i == 0) return 0; i--; while (i > 0) { // Return 0 if not a digit if (str[i] < '0' || str[i] > '9') return 0; word currentDigit = str[i] - '0'; word toAdd = multiplier * currentDigit; retval += toAdd; multiplier = multiplier * 10; i--; } // Check for negative if (str[i] == '-') { retval *= -1; } else { word currentDigit = str[i] - '0'; word toAdd = multiplier * currentDigit; retval += toAdd; } return retval; } /* Converts dec string into int. Assumes the string is valid. Can be signed. */ word decToInt(char* dec) { if (dec[0] == '-') { // signed return -strToInt((dec+1)); } else { return strToInt(dec); } return 0; } /* Converts hex string into int. Assumes the string is valid. */ word hexToInt(char *hex) { word val = 0; hex += 2; // skip the 0x while (*hex) { // get current character then increment char byte = *hex++; // transform hex character to the 4bit equivalent number, using the ascii table indexes if (byte >= '0' && byte <= '9') byte = byte - '0'; else if (byte >= 'a' && byte <='f') byte = byte - 'a' + 10; else if (byte >= 'A' && byte <='F') byte = byte - 'A' + 10; // shift 4 to make space for new digit, and add the 4 bits of the new digit val = (val << 4) | (byte & 0xF); } return val; } // 0b1100101 /* Converts binary string into int. Assumes the string is valid. */ word binToInt(char *binStr) { binStr += 2; // skip the 0b word retval = 0; word binLength = strlen(binStr); word i; for (i = 0; i < binLength; i++) { char c = binStr[(binLength - 1) - i]; if (c == '1') { retval += 1 << i; } else if (c != '0') { bdos_print("Invalid binary number\n"); exit(1); } } return retval; } // Converts char c to uppercase if possible char toUpper(char c) { if (c>96 && c<123) c = c ^ 0x20; return c; } // Converts string str to uppercase if possible void strToUpper(char* str) { char chr = *str; // first character of str while (chr != 0) // continue until null value { *str = toUpper(chr); // uppercase char str++; // go to next character address chr = *str; // get character from address } } /* Prints a single char c by writing it to UART_TX_ADDR */ void uprintc(char c) { word *p = (word *)UART_TX_ADDR; // address of UART TX *p = (word)c; // write char over UART } /* Sends each character from str over UART by writing them to UART_TX_ADDR until a 0 value is found. Does not send a newline afterwards. */ void uprint(char* str) { word *p = (word *)UART_TX_ADDR; // address of UART TX char chr = *str; // first character of str while (chr != 0) // continue until null value { *p = (word)chr; // write char over UART str++; // go to next character address chr = *str; // get character from address } } /* Same as uprint(char* str), except it sends a newline afterwards. */ void uprintln(char* str) { uprint(str); uprintc('\n'); } /* Prints decimal integer over UART */ void uprintDec(word i) { char buffer[11]; itoa(i, buffer); uprint(buffer); } /* Prints hex integer over UART */ void uprintHex(word i) { char buffer[11]; itoah(i, buffer); uprint(buffer); } /* Prints decimal integer over UART, with newline */ void uprintlnDec(word i) { char buffer[11]; itoa(i, buffer); uprint(buffer); uprintc('\n'); } /* Prints hex integer over UART, with newline */ void uprintlnHex(word i) { char buffer[11]; itoah(i, buffer); uprint(buffer); uprintc('\n'); }